Dynamical Paleoclimatology

Generalized Theory of Global Climate Change

BARRY SALTZMAN

Dynamical Paleoclimatology

Generalized Theory of Global Climate Change

Barry Saltzman

Department of Geology and Geophysics Yale University New Haven, Connecticut JE 98 DK: 551.583.7, 551.583

J9/4/77 INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITÄT HANNOVER HERRENHÄUSER STR. 2 - 30419 HANNOVER

A Harcourt Science and Technology Company

San Diego San Francisco New York Boston London Sydney Tokyo

Contents

3

Prologue xv Acknowledgments xix List of Symbols xxi

PART I Foundations

1 INTRODUCTION: The Basic Challenge

- 1.1 The Climate System 3
- 1.2 Some Basic Observations 4
- 1.3 External Forcing 9
 - 1.3.1 Astronomical Forcing
 - 1.3.2 Tectonic Forcing 12
- 1.4 The Ice-Age Problem 14

2 TECHNIQUES FOR CLIMATE RECONSTRUCTION 17

2.1 Historical Methods 17

- 2.1.1 Direct Quantitative Measurements 17
- 2.1.2 Descriptive Accounts of General Environmental Conditions 18

9

- 2.2 Surficial Biogeologic Proxy Evidence 18
 - 2.2.1 Annually Layered Life Forms 18
 - 2.2.2 Surface Geomorphic Evidence 19

2.3 Conventional Nonisotopic Stratigraphic Analyses of Sedimentary Rock and Ice 20

- 2.3.1 Physical Indicators 21
- 2.3.2 Paleobiological Indicators (Fossil Faunal Types and Abundances) 22

2.4 Isotopic Methods 23

- 2.4.1 Oxygen Isotopes 23
- 2.4.2 Deuterium and Beryllium in Ice Cores 24
- 2.4.3 Stable Carbon Isotopes 25

2.4.4 Strontium and Osmium Isotopes 26

- 2.5 Nonisotopic Geochemical Methods 26
 - 2.5.1 Cadmium Analysis 26
 - 2.5.2 Greenhouse Gas Analysis of Trapped Air in Ice Cores 27
 - 2.5.3 Chemical and Biological Constituents and Dust Layers in Ice Cores 27
- 2.6 Dating the Proxy Evidence (Geochronometry) 27

3 A SURVEY OF GLOBAL PALEOCLIMATIC VARIATIONS 30

- 3.1 The Phanerozoic Eon (Past 600 My) 31
- 3.2 The Cenozoic Era (Past 65 My) 34
- 3.3 The Plio-Pleistocene (Past 5 My) 35
- 3.4 Variations during the Last Ice Age: IRD Events 37
- 3.5 The Last Glacial Maximum (20 ka) 38
- 3.6 Postglacial Changes: The Past 20 ky 39
- 3.7 The Past 100 Years 40
- 3.8 The Generalized Spectrum of Climatic Variance 41
- 3.9 A Qualitative Discussion of Causes 44

4 GENERAL THEORETICAL CONSIDERATIONS 47

- 4.1 The Fundamental Equations 47
- 4.2 Time Averaging and Stochastic Forcing 51
- 4.3 Response Times and Equilibrium 55
- 4.4 Spatial Averaging 60
- 4.5 Climatic-Mean Mass and Energy Balance Equations 63
 - 4.5.1 The Water Mass Balance 63
 - 4.5.2 Energy Balance 65

5 SPECIAL THEORETICAL CONSIDERATIONS FOR PALEOCLIMATE: Structuring a Dynamical Approach 68

- 5.1 A Basic Problem: Noncalculable Levels of Energy and Mass Flow 69
- 5.2 An Overall Strategy 72
- 5.3 Notational Simplifications for Resolving Total Climate Variability 74
- 5.4 A Structured Dynamical Approach 76
- 5.5 The External Forcing Function, F 82
 - 5.5.1 Astronomical/Cosmic Forcing 82
 - 5.5.2 Tectonic Forcing 82

6 BASIC CONCEPTS OF DYNAMICAL SYSTEMS ANALYSIS: Prototypical Climatic Applications 84

- 6.1 Local (or Internal) Stability 84
- 6.2 The Generic Cubic Nonlinearity 86
- 6.3 Structural (or External) Stability: Elements of Bifurcation Theory 87
- 6.4 Multivariable Systems 92

6.4.1 The Two-Variable Phase Plane 92

- 6.5 A Prototype Two-Variable Model 95
 - 6.5.1 Sensitivity of Equilibria to Changes in Parameters: Prediction of the Second Kind 97
 - 6.5.2 Structural Stability 99
- 6.6 The Prototype Two-Variable System as a Stochastic-Dynamical System: Effects of Random Forcing 103
 - 6.6.1 The Stochastic Amplitude 104
 - 6.6.2 Structural Stochastic Stability 104
- 6.7 More Than Two-Variable Systems: Deterministic Chaos 108

PART II Physics of the Separate Domains

7 MODELING THE ATMOSPHERE AND SURFACE STATE AS FAST-RESPONSE COMPONENTS 113

- 7.1 The General Circulation Model 114
- 7.2 Lower Resolution Models: Statistical-Dynamical Models and the Energy Balance Model 115
 - 7.2.1 A Zonal-Average SDM 116
 - 7.2.2 Axially Asymmetric SDMs 117
 - 7.2.3 The Complete Time-Average State 119
- 7.3 Thermodynamic Models 119
 - 7.3.1 Radiative–Convective Models 119
 - 7.3.2 Vertically Averaged Models (the EBM) 120
- 7.4 The Basic Energy Balance Model 121
- 7.5 Equilibria and Dynamical Properties of the Zero-Dimensional (Global Average) EBM 123
- 7.6 Stochastic Resonance 127
- 7.7 The One-Dimensional (Latitude-Dependent) EBM 129
- 7.8 Transitivity Properties of the Atmospheric and Surface Climatic State: Inferences from a GCM 132
- 7.9 Closure Relationships Based on GCM Sensitivity Experiments 134

-4

7.9.1 Surface Temperature Sensitivity 135

7.10 Formal Feedback Analysis of the Fast-Response Equilibrium State 139

7.11 Paleoclimatic Simulations 143

8 THE SLOW-RESPONSE "CONTROL" VARIABLES: An Overview 146

8.1	The	Ice	Sheets	147

- 8.1.1 Key Variables 147
- 8.1.2 Observations 148

8.2 Greenhouse Gases: Carbon Dioxide 149

8.3 The Thermohaline Ocean State 151

8.4 A Three-Dimensional Phase-Space Trajectory 154

9 GLOBAL DYNAMICS OF THE ICE SHEETS 158

- 9.1 Basic Equations and Boundary Conditions 158
- 9.2 A Scale Analysis 163
- 9.3 The Vertically Integrated Ice-Sheet Model 166
- 9.4 The Surface Mass Balance 168
- 9.5 Basal Temperature and Melting 169
- 9.6 Deformable Basal Regolith 171
- 9.7 Ice Streams and Ice Shelves 172
- 9.8 Bedrock Depression 172
- 9.9 Sea Level Change and the Ice Sheets: The Depression-Calving Hypothesis 173

9.10 Paleoclimatic Applications of the Vertically Integrated Model 176

9.11 A Global Dynamical Equation for Ice Mass 177

10 DYNAMICS OF ATMOSPHERIC CO_2 181

- 10.1 The Air–Sea Flux, Q^{\uparrow} 183
 - 10.1.1 Qualitative Analysis of the Factors Affecting Q^{\uparrow} 185

10.1.2Mathematical Formulation of the Ocean Carbon Balance18910.1.3A Parameterization for Q^{\uparrow} 191

10.2 Terrestrial Organic Carbon Exchange, W_C^{\uparrow} 192

- 10.2.1 Sea Level Change Effects 194
- 10.2.2 Thermal Effects 194
- 10.2.3 Ice Cover Effects 194
- 10.2.4 Long-Term Terrestrial Organic Burial, $\widehat{W}_{G}^{\downarrow}$ 195

10.2.5 The Global Mass Balance of Organic Carbon 196

10.3 Outgassing Processes, V^{\uparrow} 196

10.4 Rock Weathering Downdraw, W^{\downarrow} 197

- 10.5 A Global Dynamical Equation for Atmospheric CO₂ 200
- 10.6 Modeling the Tectonically Forced CO₂ Variations, $\hat{\mu}$: Long-Term **Rock Processes** 200 10.6.1 The Long-Term Oceanic Carbon Balance 201
 - 10.6.2 The GEOCARB Model 201
- 10.7 Overview of the Full Global Carbon Cycle 205

11 SIMPLIFIED DYNAMICS OF THE THERMOHALINE OCEAN STATE 206

- 11.1 General Equations 208
 - 11.1.1 Boundary Conditions 209
- 11.2 A Prototype Four-Box Ocean Model 210
- 11.3 The Wind-Driven, Local-Convective, and Baroclinic
 - **Eddy Circulations** 211

11.3.1 The Wind-Driven Circulation: Gyres and Upwelling 211

- 11.3.2 Local Convective Overturnings and Baroclinic Eddy Circulations 215
- 11.4 The Two-Box Thermohaline Circulation Model: Possible Bimodality of the Ocean State 216
 - 11.4.1 The Two-Box System
 - 216
 - 11.4.2 A Simple Model of the TH Circulation 219
 - 11.4.3 Meridional Fluxes 221
 - 11.4.4 Dynamical Analysis of the Two-Box Model 222
- 11.5 Integral Equations for the Deep Ocean State 226
 - 11.5.1 The Deep Ocean Temperature 226
 - 11.5.2 The Deep Ocean Salinity 228
 - 11.6 Global Dynamical Equations for the Thermohaline State: θ and S_{φ} 229

PART III Unified Dynamical Theory

12 THE COUPLED FAST- AND SLOW-RESPONSE VARIABLES AS A GLOBAL DYNAMICAL SYSTEM: 235 Outline of a Theory of Paleoclimatic Variation

- 12.1 The Unified Model: A Paleoclimate Dynamics Model 236
- 12.2 Feedback-Loop Representation 238
- 12.3 Elimination of the Fast-Response Variables: The Center Manifold 241

- 12.4 Sources of Instability: The Dissipative Rate Constants 242
- 12.5 Formal Separation into Tectonic Equilibrium and Departure Equations 244

13 FORCED EVOLUTION OF THE TECTONIC-MEAN CLIMATIC STATE 247

- 13.1 Effects of Changing Solar Luminosity and Rotation Rate 248
 - 13.1.1 Solar Luminosity (S) 248
 - 13.1.2 Rotation Rate (Ω) 249
- 13.2 General Effects of Changing Land–Ocean Distribution and Topography (h) 249
- 13.3 Effects of Long-Term Variations of Volcanic and Cosmic Dust and Bolides 253
- 13.4 Multimillion-Year Evolution of CO₂ 255
 - 13.4.1 The GEOCARB Solution 255
 - 13.4.2 First-Order Response of Global Ice Mass and Deep Ocean Temperature to Tectonic CO₂ Variations 259
- 13.5 Possible Role of Salinity-Driven Instability of the Tectonic-Mean State 260
- 13.6 Snapshot Atmospheric and Surficial Equilibrium Responses to Prescribed \hat{y} -Fields Using GCMs 261

14 THE LATE CENOZOIC ICE-AGE DEPARTURES: An Overview of Previous Ideas and Models 262

- 14.1 General Review: Forced vs. Free Models 262
 - 14.1.1 Models in Which Earth-Orbital Forcing Is Necessary 263
 - 14.1.2 Instability-Driven (Auto-oscillatory) Models 265
 - 14.1.3 Hierarchical Classification in Terms of Increasing Physical Complexity 266
- 14.2 Forced Ice-Line Models (Box 1, Fig. 14-1) 266
- 14.3 Ice-Sheet Inertia Models 267
 - 14.3.1 The Simplest Forms (Box 2) 267
 - 14.3.2 More Physically Based Ice-Sheet Models: First Applications 268
 - 14.3.3 Direct Bedrock Effects (Box 3) 269
 - 14.3.4 Bedrock-Calving Effects (Box 4) 270
 - 14.3.5 Basal Meltwater and Sliding (Box 5) 270
 - 14.3.6 Ice Streams and Ice Shelf Effects 270
 - 14.3.7 Continental Ice-Sheet Movement (Box 6) 270
 - 14.3.8 Three-Dimensional $(\lambda, \varphi, h_{\rm I})$ Ice-Sheet Models 271
- 14.4 The Need for Enhancement of the Coupled Ice-Sheet/Atmospheric Climate Models 271

14.5 Ice-Sheet Variables Coupled with Additional

Slow-Response Variables 272

- 14.5.1 Regolith Mass, m_r (Box 7) 272
- 14.5.2 The Deep Ocean Temperature θ (Box 8) 273
- 14.5.3 The Salinity Gradient S_{φ} (Box 9) 274
- 14.6 Carbon Dioxide, μ (Box 10) 274
 - 14.6.1 Earlier History 274
 - 14.6.2 Quantitative Revival of the Carbon Dioxide Hypothesis 275
- 14.7 Summary 276

15 A GLOBAL THEORY OF THE LATE CENOZOIC ICE AGES: Glacial Onset and Oscillation 278

- 15.1 Specialization of the Model 279
- 15.2 The 100-ky Oscillation as a Free Response: Determination of theAdjustable Parameters282
 - 15.2.1 Nondimensional Form 283
 - 15.2.2 Internal Stability Analysis to Locate a Free 100-ky-Period Oscillation in Parameter Space 284
- 15.3 Milankovitch Forcing of the Free Oscillation 286
- 15.4 Structural Stability as a Function of the Tectonic CO₂ Level 288
- 15.5 A More Complete Solution 290
- 15.6 Predictions 295
- 15.7 Robustness and Sensitivity 297
- 15.8 Summary: A Revival of the CO₂ Theory of the Ice Ages 298

16 MILLENNIAL-SCALE VARIATIONS 301

- 16.1 Theory of Heinrich Oscillations 303
 - 16.1.1 The "Binge–Purge" Model 304
 - 16.1.2 Scale Analysis of the Factors Influencing $T_{\rm B}$ 305
 - 16.1,3 Diagnostic Analysis 306
 - 16.1.4 Dynamical Analysis: A Simple Heinrich-Scale Oscillator 308
- 16.2 Dynamics of the D-O Scale Oscillations 311

17 CLOSING THOUGHTS: EPILOGUE 314

17.1 Toward a More Complete Theory 314

17.2 Epilogue: The "Ice Ages" and "Physics" 318

Bibliography321Index343List of Volumes in the Series351